Like a Square Peg in a Round Hole: Why Contour Shape Matters for Learning New Intonation Patterns

Mariapola D’Imperio1,2 & James Sneed German1
1 Aix-Marseille Université, CNRS, LPL, Aix-en-Provence, France
2 Institut Universitaire de France, Paris, France

Introduction

- Imitation across typologically distinct dialects
 - Requires approximating phonetic details of phonological structures not in the D1 system
 - D1-D2 imitation is not limited by strong category assimilation as in D1-D1 [1] or high cognitive demand as in L1-L2 [2]
 - Reveals the type and granularity of phonetic detail that can be accessed/implemented by the production system from recently experienced speech events
- D’Imperio & German (2015) [3]:
 - Singapore English (SgE) speakers imitated early F0 peak timing of stress-initial American English (AmE) target words utterance-initially in declaratives
 - No phonetically similar pattern in SgE inventory
- Contour shape marks intonational contrasts in some varieties (Neapolitan Italian [4], German [5].)
- Y/N questions in Singapore English vs. Am. English
 - Phonetic similarity: Final rising pattern
 - Contour shape: SgE has later rise with no dip (lacks L*), no inflection (i.e., concave versus s-shape)

Issues

- Contour shape: Can the contour shape of recently experienced tokens be accessed/implemented by the production system?
- Perceptual assimilation: Compared to peak timing, does phonetic similarity of Y/N contours limit speakers’ ability to match phonetic detail of AmE targets?

Methods

- Tasks: Baseline reading (D1) + imitation of AmE speaker
- Target words: trisyllabic, initial stress, sentence-final
- Participants: 18 males, bilingual in SgE/Mandarin
- Measures: Mean F0 of 12 intervals within each target word
- Comparison 1: F0 at timestep X condition
- Comparison 2: Curvature (deg. of inflection) - 3rd coefficient of a 3rd order polynomial regression-fitted to F0 time series

Results

- F0 scaling (Comparison 1): At each timestep, speakers modified F0 towards the AmE targets (task x time interaction: est.max = 26.1, tmax = 7.83, p < 0.0001)
- Curvature (Comparison 2): Speakers produced more highly inflected contours during imitation (est. = -4.52, t = 2.35, p < 0.05), high degree of overlap with baseline
- Item-by-item accuracy of curvature depends on self-reported exposure to AmE (r² = 0.0755, p = 0.14)

Discussion

- Perceptual assimilation: Speakers imitated phonetic details of F0 scaling in different regions despite superficial phonetic similarity between D1/D2 contours
- Contour shape is not immediately accessible by the production system
 - Speakers may not perceive differences in shape due to effects of perceptual assimilation
 - Producing complex contours may require articulatory practice
- Suggests that imitated tokens are variants of a D1 category whose scaling parameters have been adjusted to provide a better phonetic match to the AmE targets
- Recruitment of native categories does not preclude the imitation of phonetic details as suggested by [1]

References

Acknowledgements: This research has been made possible through the support of the A*MIDEX project (n° ANR-11-IDEX-0001-02) funded by the Investissements d’Avenir French Government program, managed by the French National Research Agency (ANR). It was also supported in part by the Erasmus Mundus Action 2 program MULTI of the European Union, grant agreement number 2010-5004-7, and by a grant from the Singapore Ministry of Education Academic Research Fund Tier 1 (2013-T1-002-169).